
LATTE: Layer Algorithm-aware Training Time

Estimation for Heterogeneous Federated Learning

Kun Wang1, Zimu Zhou2, Zhenjiang Li1

1 Department of Computer Science, City University of Hong Kong
2 School of Data Science, City University of Hong Kong

Background - On-Device Federated Training

Autonomous Driving

Server

Speech Recognition
Smart Reply helper

Data

Data

Data

2

Huge training time gap between devices

Server

3

Stronger Devices need to wait for Weaker Devices

T2 = 300s

Has low
FL efficiency

T3 = 1000s
T1 = 100s

T1 << T2 << T3

Idea - Heterogeneous Federated Learning

Server

4

Different devices but Similar Training Time

It was proved that
can really improve

FL efficiency !T1 ≈ T2 ≈ T3

Strong-tier

Mid-tier
Weak-tier

Recent work - Fine-grained method

5

Comp. Load (C)

Comp. Capabili ty (r(d))

10 TFLOPS 1000 MACCs

5 TFLOPS500 MACCs

Allocating sub-models according
device’s computing power (i.e., FLOPS)

Recent work - Fine-grained method

6

Comp. Load (C)

Comp. Capabili ty (r(d))

10 TFLOPS 1000 MACCs

5 TFLOPS500 MACCs

This training time modeling is still over-simple!

Invalid

Training Time Inconsistency Problem

Problem 1 - Training Time Inconsistency

7

• Even training same models in the same devices, training time has huge gap by
using different DL frameworks.

5 TFLOPS50 MACCs 5 TFLOPS50 MACCs

V.S.

Key Observation - Layer Algorithm Diversity

8

• There are several candidate layer algorithms implementation in DL frameworks.

Analyzing source codes of DL framework’s training mechanism

Key Observation - Different Algorithm Selecting Strategy

9

• Different DL frameworks may select different layer algorithms as implementation.

Strategy 2

Strategy 1

Strategy 3

Different Convolution Layer Algorithms

Different layer algorithms have different
computation workloads thus different training time.

Training Time Modeling Reformulation

10

Accurate training time modeling
need to consider the layer algorithms.

Invalid!

Training Time Modeling Reformulation

11

Accurate training time modeling
need to consider the layer algorithms.

Invalid!

Now we indeed can allocate sub-models efficiently, however…

Strategy 2

Strategy 1

Strategy 3

Problem 2 - Most Strategies are not optimal

Different Convolution Layer Algorithms

Slower

Fastest

12

Most strategies selecting the sub-optimal
algorithms as their layer implementation

Slower

Strategy 2

Strategy 1

Strategy 3

Problem 2 - Most Strategies are not optimal

Different Convolution Layer Algorithms

Slower

Slower

Fastest

13

Algorithm_1

Slower 40 MACCs

Smaller
sub-model

New Strategy

How to design a better selecting strategy?

14

Different Convolution Layer Algorithms

Fastest

Algorithm_4

Fastest 60 MACCs

larger
sub-modelAlgorithm_1

Slower 40 MACCs

Smaller
sub-model

Observation - TensorFlow’s Exhaustive Testing Strategy

Exhaustive
Testing

Optimal Algorithm
Ranking

Always optimal
but slowly

15

Observation - PyTorch’s Heuristic Blackbox Strategy

13 dims Layer Configs

Sub-optimal
Algorithm

As input

Heuristic &
End-to-end

output

Only 74% optimal
but fast

16

Thinking

• How to design an accurate and fast algorithm selecting strategy?

Slow but Accurate Fast but Inaccurate

How to design a new strategy
combine with all the advantages?

Exhaustive
Testing

Heuristic &
End-to-end

17

Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector

Algorithm Selection Classification

MLP

18

Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector

Algorithm Selection Classification

MLP
Utilizing same layer

configs as input

19

13 - dimensions

Layer Configs

Heuristic &
End-to-end

Input_Size

Output_Size

Kernel_Size

Padding

Stride

…

Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector

Algorithm Selection Classification

MLP
Utilizing same layer

configs as input

Provide ground truth
data for training

20

Exhaustive
Testing

13 - dimensions

Layer Configs

Ground Truth

Algo_5

Algo_3

Config_1

Config_n

Algo_1Config_2

… …

Heuristic &
End-to-end

Input_Size

Output_Size

Kernel_Size

Padding

Stride

…

Design 2 - Training Time Estimator

21

• Training Time Estimation by profiling

MLP Algotithm_4

Design 2 - Training Time Estimator

• Training Time Estimation by profiling

22

MLP Algotithm_4

Design 2 - Training Time Estimator

• Training Time Estimation by profiling

23

MLP Algotithm_4

Per-algo

Profiling... …

Profiling in each device

Put all pieces together

Layer
Algorithm

Selector

Training
Time

Estimator

24

Training Time

Put all pieces together

2 TFLOPS5 TFLOPS10 TFLOPS

. . .

Layer
Algorithm

Selector

Training
Time

Estimator

25

Generating
fine-grained
sub-models

312s78.9s99.5s

…

… 812s99.1s152s

…

…99s30s64s

…

…

Training Time
Estimation Tool

Put all pieces together

2 TFLOPS5 TFLOPS10 TFLOPS

. . .

Layer
Algorithm

Selector

Training
Time

Estimator

26

312s78.9s99.5s

…

… 812s99.1s152s

…

…99s30s64s

…

…

Training Time
Estimation Tool

Generating
fine-grained
sub-models

Proposed LATTE Framework

Metrics

1. Time-to-Convergence: Represent whether our system can accelerate converge speed.
2. Layer Algorithm Selector’s accuracy: Represent the Layer Algorithm Selector’s performance.
3. Training Time Estimator’s Precision: Represent the Training Time Estimator’s performance.

Implementation

27

Test-bed

clients

Server

Evaluation

28

Compared with SOTA methods Evaluating each components

Evaluating Selector’s Performance Evaluating Estimator’s Performance

Conclusion

29

• We reveal the problem of development-chain diversity in federated learning
systems and identify diverse layer algorithms as the key to explain the variability in
training time. Based on this, accurate estimation of model training time can be
achieved without complex operator or kernel-level modeling.

• We devise LATTE, with a novel layer algorithm selector and training time estimator,
to accurately estimate the single-pass (forward/backward) propagation latency of a
model given its architecture, expected hardware and runtime memory. We further
showcase its usability in a client-side sub-model selection for HFL

• We conduct extensive experiments to evaluate LATTE in five typical HFL scenarios.
The results show significant improvements in performance compared to seven
classical or state-of-the-art methods.

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29

