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Background - On-Device Federated Training
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Server

Speech Recognition 
Smart Reply helper

Data

Data

Data

2



Huge training time gap between devices 

Server
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Stronger Devices need to wait for Weaker Devices

T2 =  300s

Has low
FL efficiency

T3 = 1000s 
T1 = 100s

T1 << T2 << T3



Idea - Heterogeneous Federated Learning

Server
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Different devices but Similar Training Time

It was proved that
can really improve

FL efficiency !T1  ≈ T2  ≈  T3
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Weak-tier



Recent work - Fine-grained method
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Comp.  Load (C)

Comp.  Capabili ty (r(d))

10 TFLOPS 1000 MACCs

5 TFLOPS500 MACCs

Allocating sub-models according 
device’s computing power (i.e., FLOPS)



Recent work - Fine-grained method
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Comp.  Load (C)

Comp.  Capabili ty (r(d))

10 TFLOPS 1000 MACCs

5 TFLOPS500 MACCs

This training time modeling is still over-simple!

Invalid



Training Time Inconsistency Problem

Problem 1 - Training Time Inconsistency
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• Even training same models in the same devices, training time has huge gap by 
using different DL frameworks.

5 TFLOPS50 MACCs 5 TFLOPS50 MACCs

V.S.



Key Observation - Layer Algorithm Diversity
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• There are several candidate layer algorithms implementation in DL frameworks.

Analyzing source codes of DL framework’s training mechanism



Key Observation - Different Algorithm Selecting Strategy
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• Different DL frameworks may select different layer algorithms as implementation.

Strategy 2

Strategy 1

Strategy 3

Different Convolution Layer Algorithms

Different layer algorithms have different 
computation workloads thus different training time.



Training Time Modeling Reformulation 
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Accurate training time modeling
need to consider the layer algorithms.

Invalid!



Training Time Modeling Reformulation 
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Accurate training time modeling
need to consider the layer algorithms.

Invalid!

Now we indeed can allocate sub-models efficiently, however…



Strategy 2

Strategy 1

Strategy 3

Problem 2 - Most Strategies are not optimal

Different Convolution Layer Algorithms

Slower

Fastest
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Most strategies selecting the sub-optimal 
algorithms as their layer implementation

Slower



Strategy 2

Strategy 1

Strategy 3

Problem 2 - Most Strategies are not optimal

Different Convolution Layer Algorithms

Slower

Slower

Fastest
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Algorithm_1

Slower 40 MACCs

Smaller 
sub-model



New Strategy

How to design a better selecting strategy? 
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Different Convolution Layer Algorithms

Fastest

Algorithm_4

Fastest 60 MACCs

larger 
sub-modelAlgorithm_1

Slower 40 MACCs

Smaller 
sub-model



Observation - TensorFlow’s Exhaustive Testing Strategy

Exhaustive
Testing

Optimal Algorithm
Ranking

Always optimal 
but slowly
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Observation - PyTorch’s Heuristic Blackbox Strategy

13 dims Layer Configs

Sub-optimal 
Algorithm 

As input

Heuristic &
End-to-end

output

Only 74% optimal
but fast
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Thinking

• How to design an accurate and fast algorithm selecting strategy?

Slow but Accurate Fast but Inaccurate

How to design a new strategy 
combine with all the advantages?

Exhaustive
Testing

Heuristic &
End-to-end
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Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector 

Algorithm Selection         Classification

MLP
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Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector 

Algorithm Selection         Classification

MLP
Utilizing same layer 

configs as input
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13 - dimensions 

Layer Configs

Heuristic &
End-to-end

Input_Size

Output_Size

Kernel_Size

Padding

Stride

…



Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector 

Algorithm Selection         Classification

MLP
Utilizing same layer 

configs as input

Provide ground truth 
data for training
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Exhaustive
Testing

13 - dimensions 

Layer Configs

Ground Truth

Algo_5

Algo_3

Config_1

Config_n

Algo_1Config_2

… …

Heuristic &
End-to-end

Input_Size

Output_Size

Kernel_Size

Padding

Stride

…



Design 2 - Training Time Estimator 
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• Training Time Estimation by profiling

MLP Algotithm_4



Design 2 - Training Time Estimator 

• Training Time Estimation by profiling
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MLP Algotithm_4



Design 2 - Training Time Estimator 

• Training Time Estimation by profiling
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MLP Algotithm_4

Per-algo

Profiling... …

Profiling in each device



Put all pieces together

Layer
Algorithm

Selector

Training
Time 

Estimator
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Training Time



Put all pieces together
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Generating
fine-grained
sub-models

312s78.9s99.5s

…

… 812s99.1s152s

…

…99s30s64s

…

…

Training Time
Estimation Tool 



Put all pieces together
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312s78.9s99.5s
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Estimation Tool 

Generating
fine-grained
sub-models



Proposed LATTE Framework

Metrics

1. Time-to-Convergence: Represent whether our system can accelerate converge speed.
2. Layer Algorithm Selector’s accuracy: Represent the Layer Algorithm Selector’s performance.
3. Training Time Estimator’s Precision: Represent the Training Time Estimator’s performance.

Implementation
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Test-bed

clients

Server



Evaluation
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Compared with SOTA methods Evaluating each components

Evaluating Selector’s Performance Evaluating Estimator’s Performance



Conclusion
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• We reveal the problem of development-chain diversity in federated learning 
systems and identify diverse layer algorithms as the key to explain the variability in 
training time. Based on this, accurate estimation of model training time can be 
achieved without complex operator or kernel-level modeling.

• We devise LATTE, with a novel layer algorithm selector and training time estimator, 
to accurately estimate the single-pass (forward/backward) propagation latency of a 
model given its architecture, expected hardware and runtime memory. We further 
showcase its usability in a client-side sub-model selection for HFL

• We conduct extensive experiments to evaluate LATTE in five typical HFL scenarios. 
The results show significant improvements in performance compared to seven 
classical or state-of-the-art methods.
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