LATTE: Layer Algorithm-aware Training Time Estimation for Heterogeneous Federated Learning

Kun Wang¹, Zimu Zhou², Zhenjiang Li¹

¹ Department of Computer Science, City University of Hong Kong ² School of Data Science, City University of Hong Kong

Background - On-Device Federated Training

Autonomous Driving

Huge training time gap between devices

Stronger Devices need to wait for Weaker Devices

Idea - Heterogeneous Federated Learning

Different devices but **Similar** Training Time

Recent work - Fine-grained method

Allocating sub-models according device's computing power (i.e., FLOPS)

Recent work - Fine-grained method

This training time modeling is still over-simple!

Problem 1 - Training Time Inconsistency

• Even training same models in the same devices, training time has huge gap by using different DL frameworks.

Training Time Inconsistency Problem

Key Observation - Layer Algorithm Diversity

• There are several candidate layer algorithms implementation in DL frameworks.

Analyzing source codes of DL framework's training mechanism

Key Observation - Different Algorithm Selecting Strategy

• Different DL frameworks may select different layer algorithms as implementation.

4.			Layer Algorithms	Generality	Memory Efficiency
\bigcirc PyTorch \rightarrow	Strategy 1		GEMM	+++	++
			FFT	+	+++
↑ TensorFlow →	Strategy 2		FFT_TILING	++	++
			IMPLICIT GEMM	+++	+++
		,	IMPLICIT_PRECOMP_GEMM	+++	++
			DIRECT	++	+
M →	Strategy 3		WINOGRAD	+	+++
MindCrean	0,	_	WINOGRAD_NONFUSED	++	++
minuspore		_			

Different Convolution Layer Algorithms

Different layer algorithms have different computation workloads thus different training time.

Training Time Modeling Reformulation

Accurate training time modeling need to consider the layer algorithms.

Training Time Modeling Reformulation

Now we indeed can allocate sub-models efficiently, however...

Problem 2 - Most Strategies are not optimal

Different Convolution Layer Algorithms

Most strategies selecting the sub-optimal algorithms as their layer implementation

Problem 2 - Most Strategies are not optimal

Different Convolution Layer Algorithms

How to design a better selecting strategy?

Different Convolution Layer Algorithms

Observation - TensorFlow's Exhaustive Testing Strategy

Observation - PyTorch's Heuristic Blackbox Strategy

Thinking

• How to design an accurate and fast algorithm selecting strategy?

Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector

Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector

Design 1 - Layer-Algorithm Selector

• Data-driven based Layer-Algorithm Selector

Design 2 - Training Time Estimator

• Training Time Estimation by profiling

$$\rightarrow MLP \rightarrow Algotithm_4$$

Design 2 - Training Time Estimator

• Training Time Estimation by profiling

$$\rightarrow \text{MLP} \rightarrow \text{Algotithm}_{4} \rightarrow T = \frac{C(algo_i)}{r(d)}$$

Design 2 - Training Time Estimator

• Training Time Estimation by profiling

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Put all pieces together

Put all pieces together

Put all pieces together

Implementation

Proposed LATTE Framework

Test-bed

- **1. Time-to-Convergence:** Represent whether our system can accelerate converge speed.
- 2. Layer Algorithm Selector's accuracy: Represent the Layer Algorithm Selector's performance.
- 3. Training Time Estimator's Precision: Represent the Training Time Estimator's performance.

Metrics

Evaluation

Compared with SOTA methods

Evaluating each components

Evaluating Selector's Performance

Evaluating Estimator's Performance

Conclusion

- We reveal the problem of development-chain diversity in federated learning systems and identify diverse layer algorithms as the key to explain the variability in training time. Based on this, accurate estimation of model training time can be achieved without complex operator or kernel-level modeling.
- We devise LATTE, with a novel layer algorithm selector and training time estimator, to accurately estimate the single-pass (forward/backward) propagation latency of a model given its architecture, expected hardware and runtime memory. We further showcase its usability in a client-side sub-model selection for HFL
- We conduct extensive experiments to evaluate LATTE in five typical HFL scenarios. The results show significant improvements in performance compared to seven classical or state-of-the-art methods.